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The exact solution of the problem of river morphodynamics derived in Part 1 is
employed to formulate and solve the problem of planimetric evolution of river
meanders. A nonlinear integrodifferential evolution equation in intrinsic coordinates
is derived. An exact periodic solution of such an equation is then obtained in terms
of a modified Fourier series expansion such that the wavenumbers of the various
Fourier modes are time dependent. The amplitudes of the Fourier modes and their
wavenumbers satisfy a nonlinear system of coupled ordinary differential equations
of the Landau type. Solutions of this system display the occurrence of two possible
scenarios. In the sub-resonant regime, i.e. when the aspect ratio of the channel is
smaller than the resonant value, meandering evolves according to the classical picture:
a periodic train of small-amplitude sine-generated meanders migrating downstream
evolve into the classical, upstream skewed, train of meanders of Kinoshita type.
Evolution displays all the experimentally observed features: the meander growth rate
increases up to a maximum and then decreases, while the migration speed decreases
monotonically. No equilibrium solutions are found. In the super-resonant regime the
picture is essentially reversed: downstream skewing develops while meanders migrate
upstream.

Numerical solutions of the planimetric evolution equation are obtained for the
case when the initial channel pattern exhibits random small perturbations of the
straight configuration. Under these conditions, the evolution displays the typical
features of solutions of the Ginzburg–Landau equation, in particular, the occurrence
of spatial modulations of the meandering pattern which organizes itself in the form of
wavegroups. Furthermore, multiple loops develop in the advanced stage of meander
growth.

1. Introduction
The shape of river meanders is the result of a self-forming process essentially

consisting of an intermittent sequence of erosion of concave banks and accretion
associated with deposition at convex banks. In the absence of significant geological
constraints or anthropization, meanders develop typically regular forms, though ex-
amples have been reported of rivers for which spectral analysis has not revealed the
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Figure 1. An example of a super-resonant downstream skewed meander loop. Raggi Island reach,
Fly River, Papua New Guinea. Flow is from right to left. (Courtesy of W. Dietrich.)

existence of any dominant spatial scale (Speight 1965, 1967). Langbein & Leopold
(1964) suggested, on the basis of field observations, that the channel axis of meander-
ing rivers can often be mathematically described by what they called a ‘sine-generated
curve’, a line characterized by curvature which varies sinusoidally as a function of ar-
clength. Meanders are typically skewed upstream, a feature which allows us to detect
flow direction from an aerial view. The observations of Kinoshita (1961) suggest that
the inclusion of third harmonics correcting the sine-generated curve accounts for the
above skewing and for the pronounced fattening exhibited by real meanders. Hence,
Kinoshita (1961) writes

C∗ = C∗0
[
cos(λ∗s∗)−CF cos(3λ∗s∗)−CS sin(3λ∗s∗)

]
, (1.1)

where C∗ is curvature, λ∗ is the intrinsic meander wavenumber, s∗ is arclength, CF
and CS are called ‘fattening’ and ‘skewing’ coefficients, respectively, and an asterisk
denotes dimensional quantities.

A second important field observation which applies to freely developing meanders
is the reduction of the downstream migration rate (Kinoshita 1961) and the initial
increase and eventual decay of lateral migration rate (Nanson & Hickin 1983).

Though the latter observations depict the more common typology of planimetric
development of river meanders, it is not uncommon to observe the opposite behaviour.
Figure 1 shows an example of one downstream skewed meander loop in the so-
called Raggi Island reach (Fly River, Papua New Guinea) (courtesy of W. Dietrich);
moreover, ‘multiple loops’ are also often observed in nature (see figure 2). This was
previously pointed out by Brice (1974), who discussed the typical shape of meander
loops and showed (his figure 1) examples of downstream skewed meander loops and
of multiple loops.

The above simple field observations pose various questions. Are the sine-generated
curve and Kinoshita curve pure empirical correlations? Why are even harmonics
absent, and harmonics higher than the third apparently negligible? What determines
the type of meander development? Why are most meanders upstream skewed while
others are skewed downstream? Is the migration speed invariably positive? Can we
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Figure 2. Reach of the meandering Notikewin River (Canada): multiple loops occur.
Flow is from right to left. (Courtesy of G. Parker.)

predict the development of the above shapes and the time variation of lateral and
longitudinal migrations on the basis of a mechanistic model?

Some of the above questions have already been posed and answered in a series of
important papers published by Parker and his coworkers in the 1980s (Ikeda, Parker
& Sawai 1981; Parker, Sawai & Ikeda 1982; Parker, Diplas & Akiyama 1983; Parker
& Andrews 1986).

We wish to revisit the above problems in the light of recent developments of
the theory of river meandering (see Part 1, Zolezzi & Seminara 2001), which will
now be set as the basis of a nonlinear theory of bend instability able to cover
both sub-resonant and super-resonant conditions. Our final aim is to construct a
mechanistic model of river development able to answer the questions posed above. It
will appear that in the sub-resonant case, our nonlinear solution does indeed predict
the development of meander shapes of the Kinoshita type from incipient formation
to cutoff. The downstream migration rate is invariably found to decline while the
transverse migration rate increases to a maximum and eventually decays. The latter
findings are in complete agreement with observations.

In the super-resonant case, meanders are found to develop a shape which is
downstream skewed and migrates upstream. However, as meanders develop, the
associated reduction of the average channel slope leads to increasing values of the
flow depth, hence, to decreasing values of the width to depth ratio. As a result, super-
resonant meanders tend to cross the resonant barrier and recover a sub-resonant
behaviour in later stages of meander growth. The occurrence of multiple loops is also
predicted.

The rest of the paper proceeds as follows. In § 2, we derive a new intrinsic formu-
lation of the planimetric evolution equation which is given an exact analytic periodic
solution in § 3. Results are described in § 4 and in § 5 for meander trains starting from
periodic and random initial configurations, respectively, both in the sub-resonant and
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Figure 3. Notation of planimetric evolution of channel axis.

in the super-resonant cases. Finally in § 6, a discussion of the various aspects which
still warrant attention along with some conclusions complete the paper.

2. An intrinsic formulation of the planimetric evolution equation of
meandering channels

A Cartesian form of the planimetric evolution equation of meandering channels
was first derived by Ikeda et al. (1981). Here we present an intrinsic formulation
which turns out to take a relatively simple form and appears to be the most suitable
one to explain the field observations of Langbein & Leopold (1964) and Kinoshita
(1961).

Let ζ denote the lateral migration rate of the channel scaled by some typical
speed U∗0 , say the average uniform speed of the flow in the initially straight channel.
Furthermore, let s be the curvilinear coordinate which identifies the location at time t
of the cross-section which was located at s0 initially, the quantities s and t being made
dimensionless by B∗ and (B∗/U∗0 ), respectively, with B∗ the half-channel width. The
quantity ζ will be a function of s and t through its dependence on the distribution of
bank erosion, hence on the characteristics of the flow field, of bed topography and of
the geological texture of the banks.

Figure 3 suggests that the relative transverse displacement of two neighbouring
points of the channel axis, say s and s + ds, in the infinitesimal time interval dt is
related to the infinitesimal variation of the angle ϑ which the tangent to the channel
axis forms with some Cartesian axis x, in the form

ζ,sdsdt = (ϑ,t|s0dt)ds, (2.1)

where ϑ,t|s0 is a Lagrangian derivative. Transforming the latter equation into Eulerian
form we find from (2.1)

ϑ,t + ϑ,s
ds

dt
= ζ,s. (2.2)

The material derivative of the arclength ds/dt is then readily obtained noting that
in the interval dt each infinitesimal portion of the channel axis increases its initial
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length ds by an amount d(ds) which reads

d(ds) =
(ζdt)

R
ds = −ζϑ,s dsdt, (2.3)

with R the dimensionless local radius of curvature, scaled by B∗.
Hence,

ds

dt
= −

∫ s

0

ζϑ,sds (2.4)

and (2.2) becomes

ϑ,t − ϑ,s
∫ s

0

ζϑ,sds = ζ,s. (2.5)

Equation (2.5) is the intrinsic form of the planimetric evolution equation of mean-
dering channels. It may be useful to point out that the latter equation applies at
any stage of meander evolution (preceding cutoff), while the Cartesian formulation
employed in the standard model (see equation (2) of Parker et al. 1983) is restricted
by a representation of the channel centreline as a single-value function. We point
out the integro-differential character of the latter equation which is due to its ability
to account for the history of the deformation process. Nonlinearity is the second
important feature of (2.5); it arises from purely geometrical constraints. Flow non-
linearity may also affect (2.5) provided the dependence of ζ on ϑ is nonlinear. The
latter behaviour arises under near resonant conditions. Finally, we note that (2.5)
governs the evolution of ϑ, hence of curvature, and in this respect it appears to be
the most appropriate form of the evolution equation to check the significance of the
field observations of Langbein & Leopold (1964) and Kinoshita (1961).

In order to establish the coupling between the planimetric evolution equation (2.5)
and the solution for the flow-bed topography fields we must stipulate a suitable
‘erosion law’. The process of meander migration is based on the occurrence of erosion
at concave banks and deposition at the convex banks. This is an intermittent process,
the details of which are fairly complex. Erosion may be associated with several causes,
like bank collapse due to scour at the bank toe or development of tension cracks,
groundwater seepage and vegetation (see Mosselman (1989) for a discussion of the
various possible mechanisms). However, it proves sufficiently adequate to assume that
on the very slow timescale associated with the planimetric development of the channel,
the process may be modelled as continuous and that a simple linear law relates ζ to
some measure of flow perturbations relative to the uniform configuration assumed to
be in equilibrium. In other words, the transient process whereby sediment eroded at
concave banks is deposited at convex banks, keeping the channel width constant, is
taken to occur instantaneously. Ikeda et al. (1981) have assumed that the appropriate
measure of flow perturbations determining the transverse rate of migration of the
channel is the perturbation of longitudinal velocity u evaluated at the bank. Such
an assumption has found some support in the attempt at a mechanistic description
of bank erosion by Hasegawa (1989). One may argue in favour of slightly different
assumptions such as choosing the perturbation of bottom stress at the bank as an
alternative quantity controlling the distribution of ζ. Indeed, as argued by Osman &
Thorne (1988), the transverse migration rate of a channel is ultimately controlled by
the ability of the stream to remove the sediment accumulating at the bank toe.

However, we have tested the sensitivity of the solution to the choice of different
assumptions and found that its qualitative behaviour is not affected. Hence, we follow
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Ikeda et al. (1981) and stipulate that

ζ = E
[
u|n=1 − u|n=−1

]
, (2.6)

where E is the erodibility coefficient and n the dimensionless transverse coordinate,
scaled by B∗.

Note that (2.6) rules out any possible effect on the erosion rate of a symmetric
component of u as the latter would lead to widening of the channel, but no shifting
of the channel axis.

In order to make any progress, we must employ the solution for the flow-bed
topography field of the meandering channel derived in the Part 1.

3. An exact periodic solution for meander development from incipient
formation to cutoff

Let us consider a wide curved channel with constant width 2B∗ and gently sloping
banks. Let the channel axis be described by a distribution ϑ(s, t) such that the
dimensionless channel curvature (−ϑ,s) be everywhere small. Hence, we write

−ϑ,s = ν0C(s, t), (3.1)

with

ν0 ≡ B∗

R∗0
� 1, (3.2)

where R∗0 is some characteristic value of the radius of curvature. In (3.1) C(s, t) is
some O(1) function describing the instantaneous distribution of curvature. We will
assume that C(s, t) can be expanded in Fourier series in the reach considered, such
that

C(s, t) =

∞∑
m=1

(Cmem + c.c.), em = exp iλms, (3.3a, b)

where both amplitudes (Cm) and wavenumbers (λm) vary on the slow timescale
associated with the planimetric development of the channel axis.

Using (2.6) and the expansion (5.11, 5.13) from Part 1 the planimetric evolution
equation (2.5) becomes

ϑ,t − eϑ,s
∞∑
m=0

(−1)m
∫ s

0

umϑ,sds = e

∞∑
m=0

(−1)mum,s, (3.4)

where e = 2Eν0 is the modified erosion coefficient.
The solution of the latter equation is then coupled with the solution of the flow

problem (5.15)–(5.17) from Part 1.

3.1. Sine-generated curve and linear bend instability

The simplest periodic solution of (3.4–5.15 Part 1) under the assumption of linearity
is the sine-generated curve of Langbein & Leopold (1964), which then appears to be a
theoretically founded result rather than a pure empirical correlation. Indeed assuming

ϑ = ϑ1(t) exp(iλs) + c.c., (3.5)

with ϑ1 taken to be infinitesimal (3.4–5.15 Part 1) reduce to

dϑ1

dt
= Gϑ1, (3.6)
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where

G =
e

ν0

∞∑
m=0

(−1)miλAm

7∑
j=1

%j(iλ)
j

4∑
j=0

σj(iλ)
j

. (3.7)

This solution represents a regular sequence of small-amplitude meanders of wavenum-
ber λ. They decay or grow depending on whether or not the value of λ exceeds some
critical value depending on the parameters β, τ∗ and ds. The latter findings coincide
with the predictions of Blondeaux & Seminara (1985). In that paper, it was also
shown that for suitable values of λ and β, depending on θ and ds, the growth rate
tends to infinity, which implies the occurrence of resonance. Such a phenomenon was
explained in terms of a forcing of a natural response of flow and bed topography
consisting of stationary free bars. Furthermore, under sub-resonant conditions, me-
anders are found to migrate downstream whereas super-resonant conditions imply
upstream migration. The change of sign of the migration speed from positive to nega-
tive is associated with a progressive shift of the location of maximum flow velocity
at the outer bank from downstream to upstream of the bend apex. An experimental
verification of the occurrence of such a shift as β crosses the resonant barrier was
obtained by Colombini, Tubino & Whiting (1992).

The linear flow solution derived in this section fails under near resonant conditions
and a nonlinear solution of the type proposed by Seminara & Tubino (1992) is called
for. We exclude from our analysis the occurrence of resonance, i.e. we analyse the
process occurring when growth is associated with non-resonant conditions.

3.2. Kinoshita curve and nonlinear bend instability

A general periodic solution of (3.4) and (5.15 Part 1) is

ϑ =

∞∑
k=1

ϑk(t) exp[iλk(t)s] + c.c., (3.8)

where

λk =
2π

L(t)
(2k − 1) = (2k − 1)λ(t), (3.9)

and L(t) is the intrinsic wavelength of meanders scaled by B∗. The reader will note
the peculiarity of the above expansion, which is not a simple Fourier expansion; in
fact, in (3.8), the wavenumber of each Fourier mode is time dependent.

At each time, the first two terms of (3.8) identify a Kinoshita-type curve. It will
appear from the results presented in the next section that, in the sub-resonant case,
spatial harmonics higher than the third do not play any role as cutoff is found to occur
before they have had the chance to amplify. Hence, Kinoshita’s (1961) observations
find theoretical support in the present solution.

Also, note that (3.8) does not contain even harmonics: this is a result of the cubic
geometric nonlinearity of the planimetric evolution equation.

Setting

(um, ζ) =

∞∑
k=1

[(umk, ζk)ϑk exp(iλks+ c.c.)] (3.10)

we find from (2.6) that

ζk =
e

ν0

∞∑
m=0

(−1)mumk, (3.11)
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where, recalling (5.15 Part 1), the coefficients umk read:

umk = Am

7∑
j=1

%j(iλk)
j

4∑
j=0

σj(iλk)
j

. (3.12)

Substituting from (3.8)–(3.10) into (3.4), equating coefficients of exp(iλks)(k = 0, 1, . . .)
and imposing that terms linear in s (i.e. non-periodic contributions associated with
the integro-differential nonlinearity of (2.5)) should vanish, results in a system of
nonlinear ordinary differential equations with cubic nonlinearities for the complex
coefficients of the expansion (3.8). If harmonics higher than the fifth are neglected,
the resulting system is found to read:

dϑ1

dt
= iλ

{
ζ1ϑ1 − 1

2
ζ1ϑ

3
1 − 1

2
(ζ1ϑ

2
1ϑ̄1 + c.c.)− 1

4
(3ζ1 + ζ3)ϑ

2
1ϑ3 + 1

2
(ζ̄3 − 3ζ1)ϑ

2
1ϑ̄3

+ 1
2
ζ3ϑ̄

2
1ϑ3 + 1

2
(ζ3 − 3ζ̄1)ϑ1ϑ̄1ϑ3 − 1

4
(3ζ̄1 + ζ̄3)ϑ1ϑ̄1ϑ̄3 − 1

2
ϑ1

(
ζ3ϑ

2
3 + c.c.

)
+ 3

4
(3ζ1 − 2ζ̄3 − ζ3)ϑ1ϑ3ϑ̄3 + 1

4
(ζ5 − 5ζ1) ϑ1ϑ̄1ϑ5 + 1

4

(
9ζ5 − 5ζ̄3

)
ϑ̄1ϑ̄3ϑ5

+ 5
4

(
5
3
ζ1 − ζ̄5 − 2

3
ζ5

)
ϑ1ϑ5ϑ̄5 + 1

2
ζ5ϑ1ϑ

2
5 − 1

6
(5ζ1 + ζ5) + 1

4

(
ζ̄5 − 5ζ1

)
ϑ2

1ϑ̄5

− 1
6

(
5ζ̄1 + ζ̄5

)
ϑ1ϑ̄1ϑ̄5 − 1

2
ζ̄5ϑ1ϑ̄

2
5 − 5

2
ζ̄3ϑ1ϑ̄3ϑ5 − 1

8
ϑ1 [(3ζ5 + 5ζ3) ϑ3ϑ5 + c.c.]

+ 1
2

(
3ζ̄5 − 5ζ3

)
ϑ1ϑ3ϑ̄5 +

(
ζ3 − 9

2
ζ̄5

)
ϑ2

3ϑ̄5

}
, (3.13)

dϑ3

dt
= iλ

{
3ζ3ϑ3 + 1

2
ζ1ϑ

3
1 − 3

2
ζ1ϑ

2
1ϑ3 − 3

2
ζ̄1ϑ̄

2
1ϑ3 + 3

4
(2ζ̄1 − ζ1 − ζ3)ϑ1ϑ̄1ϑ̄3

− 3
4
(3ζ1 + ζ3)ϑ1ϑ

2
3 + 3

2
(ζ3 − 3ζ̄1)ϑ̄1ϑ

2
3 + 3

2
(ζ̄3 − 3ζ1)ϑ1ϑ3ϑ̄3 − 3

2
ζ5ϑ3ζ

2
5

− 3
4
(3ζ̄1 + ζ̄3)ϑ̄1ϑ3ϑ̄3 − 3

2
ζ3ϑ

3
3 − 3

2
(ζ3ϑ

2
3ϑ̄3 + c.c.) + 3

2

(
3ζ̄5 − 5ζ3

)
+ 15

2

(
5ζ3 − ζ̄5 − ζ5

4

)
ϑ3ϑ5ϑ̄5 + 3

2

(
3ζ5 − 5ζ̄3

)
ϑ3ϑ̄3ϑ5 − 3

2
ζ̄5ϑ3ϑ̄

2
5

− 3
4

[(
ζ5 − 5ζ̄1

)
ϑ̄1ϑ3ϑ5 + c.c.

]
+ (5ζ1 − 2ζ5) ϑ1ϑ̄3ϑ5 − 1

2

(
ζ̄5 + 5ζ̄1

)
ϑ̄1ϑ3ϑ̄5

+ 1
2
(5ζ1 + ζ5) ϑ1ϑ3ϑ5 − 3

8

[(
3ζ̄5 + 5ζ̄3

)
ϑ̄3ϑ̄5 + c.c.

]
ϑ3

}
, (3.14)

dϑ5

dt
= 5iλ

{
ζ5ϑ5

1
2
ζ5ϑ

3
5 + 1

2

(
ϑ2

5ϑ̄5ζ5 + c.c.
)− 1

8
(5ζ3 + 3ζ5) ϑ

2
5ϑ3

− 1
6
(ζ5 + 5ζ1) ϑ1ϑ

2
5 + 1

4
(ζ5 − 5ζ1) ϑ̄1ϑ

2
5 + 1

2

(
3ζ5 − 5ζ̄3

)
ϑ̄3ϑ

2
5

+ 1
20

(ζ3 + 9ζ1) ϑ
2
1ϑ3 + 1

5

(
9
2
ζ̄1 − 2ζ3

)
ϑ̄1ϑ

2
3 − 1

2
ϑ5

(
ζ3ϑ

2
3 + ζ1ϑ

2
1 + c.c.

)
− 1

4

(
ζ̄5 − 5ζ1

)
ϑ1ϑ5ϑ̄5 − 1

6

(
ζ̄5 − 5ζ̄1

)
ϑ̄1ϑ5ϑ̄5 − 1

8

(
5ζ̄3 + 3ζ̄5

)
ϑ̄3ϑ5ϑ̄5

+ 1
2

(
3ζ̄5 − 5ζ̄3

)
ϑ3ϑ5ϑ̄5 − 3

8

(
ζ3 + 3ζ5 − 4ζ̄3

)
ϑ3ϑ̄3ϑ5 − 1

4
[(3ζ1 + ζ3) ϑ1ϑ3 + c.c.] ϑ5

− 1
12

(
ζ5 + 2ζ1 − 3ζ̄1

)
ϑ1ϑ̄1ϑ5 + 1

2

[(
ζ3 − 3ζ̄1

)
ϑ̄1ϑ3 + c.c.

]
ϑ5

}
, (3.15)

dλ

dt
= λ2[i(5ζ̄5ϑ5ϑ̄5 + 3ζ̄3ϑ3ϑ̄3 + ζ̄1ϑ1ϑ̄1) + c.c.], (3.16)

where an overbar denotes the complex conjugate of a complex number.



Downstream and upstream influence in river meandering. Part 2 221

The nonlinear ordinary differential system (3.13)–(3.16) provides the set of coupled
amplitude equations able to describe the nonlinear planimetric development of
periodic trains of river meanders starting from an initial sine-generated shape of
wavenumber λ(t)|t=0.

It is instructive to examine a particular case of the latter system, obtained by
assuming that all the higher harmonics are negligible with respect to the first. The
numerical solution discussed in § 4 will show that, under sub-resonant conditions, even
at the late stage of meander development, third harmonics do typically remain much
smaller than the fundamental. Under these conditions, the above system reduces to
the following form:

dϑ1

dt
= iλ

[
ζ1ϑ1 − 1

2
ζ1ϑ

3
1 − 1

2
(ζ1ϑ

2
1ϑ̄1 + c.c.)

]
, (3.17)

dλ

dt
= λ2[iζ̄1ϑ1ϑ̄1 + c.c.]. (3.18)

Note that (3.17) bears some similarity with the classical Landau equation governing
the weakly nonlinear evolution of the unstable Fourier mode excited by the hydrody-
namic instability of steady basic states. However, the amplitude equation (3.17) differs
from the Landau equation owing to the presence of the second and fourth terms in
the right-hand side. Furthermore, the coefficients of the linear and cubic terms of
(3.17) depend on time through their dependence on the fundamental wavenumber
λ and on the coefficient ζ1(λ). This feature arises from the integrodifferential nature
of the original planimetric evolution equation (2.5), which reflects itself in the need
to evaluate the instantaneous wavenumber by solving equation (3.18) coupled to
equation (3.17). Hence, the history of channel deformation is accounted for through
the time development of the fundamental wavenumber λ.

At this stage, it is instructive to attempt answering an important general question:
do equilibrium patterns of river meanders exist? In other words, can meanders of
permanent form migrate in the longitudinal direction without displaying any growth
or decay?

This question was posed and answered by Parker et al. (1983, 1986). Parker et al.
(1983) showed that a nonlinear solution of permanent form does indeed exist in a
neighbourhood of the wavenumber characterized by vanishing growth rate. However,
such a solution was shown to be unstable by Parker & Andrews (1986). Hence, the
conclusion reached confirms the experimental observations which suggest that, in the
absence of geological constraints, meanders evolve continuously.

We may readily revisit the above problem using the Landau-type amplitude equation
(3.17). In fact, adding (3.17) multiplied by ϑ̄1 from the complex conjugate of (3.17)
multiplied by ϑ1, we find:

2
d

dt
|ϑ1|2 = iλ(ζ1 − ζ̄1)|ϑ1|2[2− |ϑ1|2], (3.19)

where |ϑ1| is the modulus of the complex number ϑ1. Hence, in order to achieve
equilibrium, the meander amplitude, expressed in terms of the real quantity |ϑ1|, must

reach the value
√

2. Figure 4 shows that such conditions can never be reached by a
train of sine-generated meander bends, as they correspond to a stage such that cutoffs
would have already occurred. Note that such a result is independent of meander
wavenumber; however, it relies on the assumption that the dominant contribution
to meander shape arises from the fundamental in our expansion (3.8). Hence, the
latter result is strongly suggestive of the absence of any equilibrium configuration,
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Figure 5. Time evolution of (a) the amplitude of the first and third harmonic, and (b) of
normalized intrinsic wavelength for meander evolution reported in figure 6(a).

but does not conclusively rule out the possibility that equilibrium might be achieved
through the development of more complex shapes with higher harmonics playing a
non-negligible role. The numerical experiments discussed below have not shown any
such tendency.

4. Planimetric development of river meanders in the sub-resonant and
super-resonant cases

We have solved the nonlinear ordinary differential system (3.13)–(3.16) by means of
a Runge–Kutta scheme of the fourth order. We have first investigated the sub-resonant
case. In order to achieve good accuracy of the integrations, a timestep dT = 0.01
(T = et) has been employed. Results are described in figures 5–7.

Figure 5 shows the results of a numerical integration starting from the initial
condition Re(ϑ1) = 0.001, Re(ϑ3) = Re(ϑ5) = Im(ϑ1) = Im(ϑ3) = Im(ϑ5) = 0 with
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Figure 6. (a) Sub-resonant evolution of periodic meanders. (b) Standard model prediction
(τ∗ = 0.2, β = 10, ds = 0.01).
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Figure 7. (a) Lateral migration rate and (b) bend amplification as functions of dimensionless time
T of meander evolution reported in figure 6(a).

the following initial values of the relevant parameters: λ = 0.1, β = 10, τ∗ = 0.2,
ds = 0.01.

It appears that meander development is characterized by two distinct phases: a
linear growth of the fundamental, followed by a slower nonlinear growth in which the
third harmonic is also excited reaching values of the order of 20 of the fundamental,
while the fifth harmonic remains negligible. Figure 5(b) shows that, during the linear
phase, the meander length increases quite slowly while the process becomes faster in
the nonlinear stage.

Figure 6(a) shows the development of the planimetric form, from the initial stage
to cutoff. Note the progressive fattening and upstream skewing of the meander shape
resulting from the role of the third harmonic. The planimetric development found
by the present model is quite close to that found by the standard model which is
reported in figure 6(b).

Figure 7(a) shows the time development of the downstream migration speed dx/dT
which is found to decrease to very small values at the stage immediately before cutoff.
Figure 7(b) shows that the rate of bend amplification grows to a peak and then slowly
decays. Both these findings are in agreement with field observations (see Nanson &
Hickin 1983).

Note that the validity of the present approach, which neglects harmonics higher
than the fifth, appears to be supported by the fact that the coefficient of the fifth
harmonic remains an order of magnitude smaller than that of the fundamental.

The strongly nonlinear solution obtained and discussed in the present section
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Figure 8. (a) Super-resonant evolution of periodic meanders. (b) Standard model prediction.
(τ∗ = 0.2, β = 30, ds = 0.01).

appears to explain the Kinoshita shape developed by large-amplitude meanders and
the occurrence of cutoff. Geometric nonlinearities intrinsic in the deformation process
appear to be sufficient to give a qualitatively satisfactory insight into the mechanics
of the process. The present findings are also in general agreement with the weakly
nonlinear analyses of Parker and his coworkers.

A different scenario has been found in the super-resonant case. Figure 8(a) shows the
planimetric development of meander shape for the same set of parameters employed
for the sub-resonant case, except for the width ratio which now exceeds βR . The
distinct features of such a shape are that meanders are skewed downstream and
migrate upstream. Such a shape is drastically different from that emerging from the
standard model, which is shown in figure 8(b).

This difference in skewness may be explained easily in terms of the phase lag δ
between the third harmonic and the fundamental; classical upstream skewing occurs
when δ lies in the range (0, π) whereas δ values in the range (π, 2π) determine
downstream skewing. Figure 9 shows the time behaviour of δ for different values of
βo = β|t=0 before the occurrence of cutoff. The value of δ lies between π and 2π
under super-resonant conditions and progressively shifts towards the range (0, π) in
the sub-resonant regime. Note that cutoff occurs at different times depending on the
value of β0.

In figure 1 we report an example of downstream skewed super-resonant meander,
which has been recently observed by W. Dietrich (personal communication). It falls
under super-resonant conditions being characterized by the values β = 33.8 and
βR = 18.2. The latter value has been obtained using data of the Raggi Island reach
of the Fly River reported by Dietrich, Day & Parker (1999), and assuming a value
of bankfull discharge ranging about 3000 m3 s−1 (W. Dietrich & G. Parker, personal
communication).

5. A numerical solution for meander development from initially
random patterns

Sequences of fairly regular, periodic meander trains are common in nature, but
they usually characterize relatively short reaches of natural rivers. More frequently,
meanders exhibit more complex patterns whose irregularity is also due to the occur-
rence of phenomena such as cutoff processes, spatial heterogeneity of bank erodibility
or human constraints which are not accounted for in the present analysis.
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Figure 9. Time evolution of the phase lag δ between the third harmonic and the fundamental for
different values of the width ratio β0 (τ∗ = 0.2, ds = 0.01).

The effect of the first two features on meander development has been investigated
by various authors. Among them, Howard (1992) and Sun et al. (1996) performed
large time simulations of meander evolution based on the standard model and were
able to reproduce intricate meandering patterns.

We show here that irregularity in meandering patterns, i.e. deviations from the
classical Kinoshita shape, does not arise only from the three phenomena mentioned
above, but is also displayed by the evolution of a meandering reach characterized
by an initially random distribution of centreline curvature. Under these conditions,
however, the solution of the planimetric evolution equation (2.5) requires numerical
integration. Assuming initial conditions consisting of a straight channel axis to which
a small-amplitude random perturbation of channel alignment is superimposed, in
the super-resonant regime, sequences of irregular meander loops develop before
cutoffs occur and under the assumption of spatial homogeneity of the floodplain.
The Kinoshita shape characterized either by upstream or downstream skewness and
migration rate together with other, commonly observed, meandering patterns (see
Brice 1974) like multiple loops may also be reproduced.

A simulation model for meandering rivers was set up following previous numerical
schemes already proposed by Howard (1992) and lately improved by Sun et al. (1996).

River evolution is described through the planimetric development of the channel
centreline, which is discretized as a sequence of points Pi = (xi, yi) each of them
representing a cross-section of the river identified by a dimensionless streamline
coordinate s.

At each timestep ∆t, each point of the sequence is shifted orthogonally to the
channel centreline by an amount ζ∆t, with ζ lateral migration rate discussed in § 2.
A new planform of the river is then obtained and the simple numerical procedure
is repeated to proceed in the simulation of the planimetric evolution. Note that this
approach corresponds to what (2.5) describes analytically; consistency of numerical
and analytical solutions was checked in the periodic case and proved to be sharp,
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Figure 10. Sub-resonant evolution of a randomly perturbed, almost straight,
initial channel configuration.

provided the spatial step ∆s was smaller than unity. The actual value chosen for ∆s
was such that the value of the ratio ∆s/∆t was larger than the minimum value for
numerical instability to occur.

The local erosion rate ζ is assumed as only parametrically dependent on time on
the large timescale of planimetric evolution and is then calculated at each timestep
according to the following procedure.

Given the initial planform in the (x, y)-coordinate domain, the distribution ϑ(s) is
obtained by averaging back and forth according to the following expression:

ϑi =
1

2

(
arctan

yi+1 − yi
xi+1 − xi + arctan

yi − yi−1

xi − xi−1

)
(5.1)

Curvature and its derivatives are numerically derived through a finite centred
difference scheme recalling that ν0C(s) = −dϑ/ds. The local erosion rate ζ(s) is
then evaluated employing equation (2.6) in which the near-bank perturbation of
longitudinal velocity is given by the exact solution (6.1 Part 1). Calculation of ζ for
each point of the centreline requires only simple numerical integration to evaluate
the convolution integrals discussed in Part 1, § 6. Such integrations were performed
by using Simpson’s rule.

End conditions were chosen to be periodic, but this choice can be easily replaced
with more realistic assumptions; moreover, note that end conditions affect the solution
only within a few meander loops of the sequence close to the end sections.

Figures 10 and 11 show the time evolution of the channel centreline under sub-
and super-resonant conditions, respectively; the same random initial condition has
been employed in the two cases. The maximum initial amplitude of the perturbation
is 0.5 B∗ and a reach with initial length 2000 B∗ is considered. The initial disturbance
was obtained by superposition of 100 different harmonics. The initial spectrum is
then modified by the evolution process as higher harmonics decay and wavelengths
characterized by higher growth rates are naturally selected, as reported in figure 12.



Downstream and upstream influence in river meandering. Part 2 227

t =140

180

220

235

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x /B

y
B

Figure 11. Super-resonant evolution of the same initial channel configuration related to figure 10.

Both figures show that selected wavelengths correspond to two or three peaks lying
quite close to each other. This suggests that the development of meandering trains is
accompanied by the formation of wave groups which are also clearly distinguishable in
figure 10. Meander loops almost resembling the classical Kinoshita shape are evidently
modulated on a spatial scale corresponding to the wavelength of the envelopes of
wave groups. This feature is also clearly noticeable in results presented by Howard
(1992) and Sun et al. (1996) but it was not pointed out by these authors.

The relevance of the above findings is related to the fact that a similar behaviour
is displayed by solutions of the Ginzburg–Landau equation, which describes the
nonlinear evolution of unstable perturbations allowing for slow spatial modulations
of the most unstable periodic disturbance. Hence, the picture emerging here is quite
coherent with the classical picture of nonlinear hydrodynamic instability.

The super-resonant evolution of the same initial pattern considered in the sub-
resonant case is reported in figure 11. Simulation is performed by employing the
same values of the relevant parameters except for β which now exceeds βR . It
shows the simultaneous development of upstream and downstream skewed meander
loops, respectively, characterized by downstream and upstream migration speeds.
Such patterns are also sometimes observed in natural streams.

Other commonly observed meandering patterns are reproduced by the present
simulations such as multiple loops and other kinds of ‘compound loops’ described by
Brice (1974). In particular, multiple loops are generally due to increasing amplitude
of higher harmonics with respect to the amplitude of the fundamental, as shown in
the super-resonant spectrum of figure 12.

6. Conclusions
We may now summarize our answers to the questions posed in § 1.
The mechanistic model formulated in Part 1 and in this paper appears to offer

a robust and coherent framework able to interpret the main features of meander
development from incipient formation to cutoff.
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Figure 12. The spectrum of the channel axis evolved from characterizing the initial condition of
numerical simulations displayed in figures 10 (sub-resonant) and 11 (super-resonant).

In particular, Langbein & Leopold’s (1964) sine-generated curve and the Kinoshita
curve rather than purely empirical correlations turn out to be the leading and second-
order approximations of the exact solution of the planimetric evolution equation,
respectively. The absence of even harmonics in such a representation of meander
shape is a consequence of the cubic nonlinearity of the planimetric evolution equation.

We have also seen that the main factor controlling the type of meander development
is the sub- or super-resonant character of channel flow. In the former regime, which is
characterized by a dominant downstream influence, regular trains of meanders migrate
downstream and geometric nonlinearities display themselves through an upstream
skewing of meander loops which take the classical Kinoshita form. The above scenario
is quite similar to that predicted by the standard model. In the super-resonant regime,
which is characterized by a dominant upstream morphodynamic influence, the picture
reverses and meanders are found to migrate upstream with meander loops skewed
downstream. However, note that meander development, increasing the channel length,
reduces the basic uniform flow depth keeping roughly the same width of channel.
Hence, the width to depth ratio decreases, and the channel regime tends to become
sub-resonant in the late stage of meander development.

Also note that no equilibrium solution has been found, though the meander growth
rate is found to decrease sharply in the late stage of meander development whereas
the migration speed of the meander train is found to decrease monotonically from
incipient formation to cutoff. Our findings suggest that equilibrium is not intrinsically
impossible, but it cannot be reached as cutoff interrupts the development process.

Further interesting features emerge from our analysis when the initial shape does
not consist of a single harmonic, but rather of a spectrum centred on a dominantly
unstable harmonic. The response of meander development changes from character-
istics typical of Landau-type amplitude equations to those typical of the Ginzburg–
Landau evolution equation. In particular, wave groups develop. Furthermore, in the
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super-resonant regime, meander shape displays alternating upstream and downstream
skewed loops as is sometimes observed in nature. Other typical meandering patterns,
such as multiple loops, are also reproduced.

The main question still left open is that of ascertaining to what extent the super-
resonant regime overlaps with the regime where braiding occurs. In this respect, note
that values of the width to depth ratio required to cross the resonant barrier are
fairly large if the bed is plane, but decrease sharply in the dune regime. Hence, while
it appears indisputable that the most common scenario is sub-resonant, transient
periods of super-resonant development are not unlikely in wide meandering channels
(see figure 7 of Part 1).

It has been suggested by one of the referees that super-resonant conditions may also
be excited in natural rivers by the commonly observed periodic variations of channel
width associated with meander loops. Ascertaining the role of periodic variations of
channel width correlated with local bend geometry will indeed deserve some attention
in the near future.

Several features of the natural phenomenon have been ignored in the present work.
The linearity of the flow model is undoubtedly the first restriction to be removed,
though it is quite likely that the picture of meander evolution will not be qualitatively
modified by flow nonlinearities. It will be less easy to understand the possible role of
migrating features which are present in the initial and late stages of meander growth
(Tubino & Seminara 1990; Whiting & Dietrich 1993). Finally, the peculiar case when
meander development proceeds from a resonant initial state cannot be covered by
the present linear model, it would rather require the use of the weakly nonlinear
approach of Seminara & Tubino (1992).

Part of the present results (concerning the periodic sub-resonant case treated
analitycally using a simpler flow model) were presented at the ‘XXIV Convegno di
Idraulica e Costruzioni Idrauliche’ (Seminara, Tubino & Zardi 1994a) and at the ‘2nd
European Fluid Mechanics Conference’ (Seminara et al. 1994b).

The numerical model discussed in § 5 is entirely due to Guido Zolezzi in partial
fulfilment of his PhD thesis.

This work has been jointly supported by the Italian Ministry for Scientific Research
(MURST) and by the Universities of Genova and of Trento under the project ‘Fluvial
and coastal morphodynamics’.

The authors are grateful to W. Dietrich who kindly provided the picture reported
in figure 1 and the data on the Fly River.
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